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In this effort we will design and develop a multi spectral sensing imaging and communi-
cations system based on a compressive sensing (CS) architecture that can computationally
adapt dynamically, in real time, to a set of optimal spectral band(s) needed to address the
desired tactical missions. The effort integrates the development and implementation of state
of the art signal processing algorithms and communications, especially compressive sensing
algorithms, with coded aperture multispectral sensors and optical design concepts, to attain
a compact spectrally agile sensor system. The system under development is composed of
three subsystems:

(1) Relay/dispersion and focal plane array (FPA) compressed measurements.

(2) Imaging and coded apertures.

(3) Analog source/channel coding subsystem. In this quarter, the following progress has
been attained in each of these thrusts:

For the period of performance ending June 2010 the following has been accomplished under
this contract in each of the subsystems:

1 Relay Compressed Measurements

1.1 Installed a monochromator-based setup to acquire calibration
cubes needed by the image reconstruction algorithm

The goal of the proposed imager is to obtain information about the imaging scene by mea-
suring the intensity of the light at each spatial location at different wavelengths which helps
to obtain detailed information of the object. Thus, in this part of the effort, we installed an
elaborate setup involving a monochromator along with other optical parts to acquire calibra-
tion cubes which could be used in the reconstruction of the image. The image reconstruction
algorithm needs to be trained before being used in the image reconstruction experiment. The
training process mainly involves the acquisition of a calibration cube, which is the a priori
knowledge of the spatially shifted information of the photomask in different spectral chan-
nels. The calibration cube can be different when different lenses/prisms are used to build the
system. To experimentally realize such a training process (acquiring the calibration cube),
we built a spectrally adjustable illumination source using a monochromator and a Xenon
(Xe) lamp. The monochromator used in our experiments is supplied by the Oriel Corpora-
tion (Oriel model number: 77200). Using suitable gratings and splits, this monochromator
can achieve a spectral resolution of 1 nm. The output spectrum of the monochromator can
be adjusted by rotating the blazing-grating in the monochromator. Thus, various spectrum
ranges can be obtained with different gratings. For our monochromator, the spectrum-range
is 440-670nm (visible). A Xe lamp (Newport model number: 66477) is used as the input to
the monochromator. Figure 1 shows the monochromator setup.
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Figure 1: Monochromator setup. The output spectrum of the monochromator can be ad-
justed by rotating blazing-grating. The spectrum-range is 440-670nm (visible).

1.2 Acquisition of the calibration cube

The key components in the process of obtaining the calibration cube are the monochromator,
photomask, prism, relay lens and a CCD camera. Particularly, the monochromator serves
as the source; photomask is used for the random aperture code while the prism is used to
introduce spectral dispersion. A relay lens relays the image from the plane of the coded
aperture to the CCD which captures the dispersed image. Moreover, we used prisms of
different apex angles to acquire the calibration cube, including an equilateral prism (Apex
angle: 60), a right angle prisms (Apex angle: 45), a wedge prism (Apex angle: 18), and
the double-amici prism mentioned in our last quarterly report in order to analyze their
performances. Figure 2 shows the experimental setup used to acquire the calibration cube.

Figure 3 shows an example of a calibration cube obtained using the equilateral prism.
The spectral resolution of the monochromator is 1nm. Therefore, for the given spectral
range, there are 231 slices in the calibration cube. We show 21 of them in Fig. 3. The
adjacent spectral images in this figure have a 10 nm difference in monochromator-emission
wavelength.

In addition to equilateral prisms, we also used prisms with apex angles of 450 and 180 to
acquire the calibration cube. In particular, Fig. 4 compares the calibration cubes obtained
with different prisms. Generally speaking, the addition of prism introduces aberrations to
the image formation process. For instance, we can see the edges of the calibration cubes
have some curvatures. The aberrations are caused by the geometric shape of the prism. The
prism has different thicknesses at different heights with respect to the apex angle. When the
light propagates through the prism at different height/angle, its propagation will be affected
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Figure 2: Experimental setup used to acquire the calibration cube using an equilateral prism
with apex angle (apex angle: 60)

Figure 3: Calibration cube obtained using an equilateral prism (apex angle: 60).

by different thicknesses of the glass material. Since the aberrations are considered in the
training process, the image reconstruction algorithm can minimize the quality degradation
caused by the aberrations. In Fig. 4, we can see that calibration cubes acquired using prisms
of smaller apex angles have apparently less field curvature.

2 Code Aperture Agile Spectral Imaging System (CAASI)

Recently, the Coded Aperture Snapshot Spectral Imaging (CASSI) architecture has made
it possible to implement CS in spectral imaging. CASSI is indeed a remarkable imaging
architecture that has been studied extensively in [1, 3, 4]. The single-shot CASSI architec-
ture, however, may use excessive compression to represent spectrally rich image cubes under
surveillance, leading in some cases to low quality image reconstructions as well as low spec-
tral resolution. The coding and reconstruction algorithms in CASSI are also rigid because
the entire spectral image cube is reconstructed at once. The new CAASI aims to overcome
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Figure 4: Calibration cubes obtained using the prisms of different apex angles.

Figure 5: Representation of the CAASI parts. The fix code aperture in the traditional CASSI
system is replaced by a spatial light modulator.

this difficulties and provides the flexibility to recover a specific subset of spectral bands with
controllable SNR or reconstruction time.

The compressive code aperture single shot spectral imaging system is depicted in Fig.
5 [1]. The coding is realized by the coded aperture T (x, y) as applied to the image source
density f0(x, y;λ) where (x, y) are the spatial coordinates and λ is the wavelength resulting in
the coded field f1(x, y, λ). The coded density is spectrally dispersed by a dispersive element
before it impinges on the focal plane array (FPA) as f2(x, y, λ),

f2(x, y, λ) =

∫ ∫
T (x′, y′)f0(x′, y′, λ)h(x′ − αλ− x, y′ − y)dx′dy′ (1)

where T (x′, y′) is the transmission function representing the code aperture, h(x′−φ(λ)−x, y′−
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y) is the optical impulse response of the system, and αλ is the dispersion induced by the prism
assuming a linear dispersion. The compressive measurements across the FPA are realized by
the integration of the field f2(x, y, λ) over the detector’s spectral range sensitivity. The source
density can be written in discrete form as (Fk)nm where n,m index the spatial coordinates,
and k determines the kth spectral plane. Following the mathematical model in [4], the coding
is realized by an aperture pattern (T)nm. The compressed sensing measurements at the focal
plane array can be written in the following matrix form:

(G)nm =
L∑
k=1

(Fk)n,m+k(T)n,m+k + ωn,m (2)

where ωnm represents white noise, L is the number of spectral bands and where n ∈
{1, 2, ..., N} and m ∈ {1, 2, ...,M} index the pixels on the detector. The expression in
(2) can be expressed as

g = Hf + ω = HΨθ + ω (3)

where g and f are a vector representation of G and F respectively. H is the projection matrix,
Ψ is a Kronecker basis representation, and θ is a sparse coefficient vector representing f . If
the aperture code pattern is fixed and only one snap-shot is detected, the resultant spectral
imager is the so-called single disperser, or single-shot, CASSI architecture [2]. In this case,
the entire 3-D multispectral image cube is compressed into a single 2-D compressive image
measurement at the FPA. The compression factor η, defined as

η = 1− M + L− 1

M × L
, (4)

indicates the grade of compressive measurements. As η → 1 the linear set of equations in (3)
became severely underdetermined causing the CASSI measurements to be highly compressed,
and in consequence the accurate reconstruction of the original information is difficult. On the
contrary, as η → 0 little compression is attained making it easier to recover the information
embedded in G. The spectral image cube f can be reconstructed by solving the optimization
problem f̂ = Ψ{argminθ′‖G−HΨθ′‖2

2 + τ‖θ′‖1} where τ > 0 is a regularization parameter
that balances the conflicting tasks of minimizing the least square of the residuals while, at
the same time, yielding a sparse solution[5]. In our work, we have obtained an equivalent
model equation of CASSI system in alternative form as

gq = DCqfq, (5)

where D represents the operation of the dispersive element, and Cq is the matrix represen-
tation of the qth row of the code aperture. The vector representation in (5) characterizing
CASSI, will be very useful in our project.

3 Analog Source/channel Coding Subsystem

In this work, we use analog joint source-channel coding for the transmission of data samples
at high rates. Here, we study the performance of such a system in comparison with optimized
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Figure 6: Block diagram of an N:1 bandwidth compression analog joint source-channel coded
system.

capacity approaching digital Bit Interleaved Coded Modulation (BICM) schemes. The aim
is to determine under which circumstances it is more convenient to use each communication
setup. We measure the performance of both analog and digital systems in terms of Signal-
to-Distortion Ratio (SDR) versus Channel Signal-to-Noise Ratio (CSNR) when Gaussian
and Laplacian distributed sources are transmitted. Notice that Gaussian and Laplacian
sources are of interest for reasons beyond their theoretical significance. In fact, images
represented in transform domains (e.g., wavelets) can be accurately modeled using these
distributions, which makes the analog joint source-channel coding system very relevant for
image communications [12]. We show that analog transmission performs better than the
digital scheme with a much lower encoding and decoding complexity.

3.1 Analog joint source-channel coded system

The distortion between source symbols X = {xi}Ni=1 and decoded symbols X̂ = {x̂i}Ni=1 is

calculated according to the MSE, defined as MSE = 1
N

N∑
i=1

||xi − x̂i||2. Consequently, the

system performance can be measured in terms of the output SDR with respect to the CSNR,
with SDR defined as SDR = 10 log (1/MSE), where the source symbols are normalized to
unit mean power. Given N and K, the theoretival limit (OPTA) is calculated by equating
the rate distortion function to the AWGN channel capacity [8]. For example, for Gaussian
sources we have N log (1/MSE) = K log (1 + 1/σ2

n).
Figure 6 shows the block diagram of an N:1 analog joint source-channel coding system

where the source generates blocks of B i.i.d. symbols that are encoded into B/N channel
symbols. Without loss of generality, we assume a source distribution with zero mean and
unit variance and also that the mean transmit power is equal to one. In this paper, we
focus on memoryless Gaussian and Laplacian sources. A particular type of parameterized
space-filling continuous curves, called spiral-like curves [8]-[10], can be used to encode the
X = (x1, x2) source samples. For the case of 2 : 1 compression (i.e., N = 2), they are
formally defined as {

xθ,1 = sign(θ)4
π
sin(θ)

xθ,2 = 4
π
cos(θ) for θ ∈ R

(6)

where 4 is the distance between two neighboring spiral arms, and θ is the angle from the
origin to the point Xθ = (x1,v, x2,v) on the curve. Therefore, each pair of source samples, x1
and x2, represent a specific point in R2 that is matched to the closest point Xθ = (x1,v, x2,v)
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Figure 7: Block diagram of a Bit Interleaved Coded Modulation(BICM) system over AWGN
channel.

on the spiral. The angle from the origin to that point on the spiral, θ̂ , will be the channel
symbol for x1 and x2, i.e.

θ̂ = M∆ (X) = a r
θ
gmin

{
(x1 ± (∆/π) θ sin θ)2 + (x2 − (∆/π) θ cos θ)2 } (7)

Since our goal is the minimization of the MSE, the bidimensional space has to be filled by
the spiral in the best possible way for every CSNR value. On one hand, by changing the 4
value, we manage to optimize this matching and to improve the system performance. On
the other hand, it is possible to achieve higher compression rates (i.e. N:1) by extending (1)
to generate more complex curves [14], [15].

The next step consists in defining an invertible function of θ̂-with the corresponding
normalization factor to ensure the transmit power constraint. In [8, 10, 16] the invertible
function Tα(θ̂) = θ̂α with α = 2, was proposed. However, as shown in [11], the system
performance can be improved if α and 4 are numerically optimized for each different CSNR

value. Therefore, the channel symbol is Tα

(
θ̂
)
/
√
γ , where

√
γ is the normalization factor.

In summary, the received symbol y at the decoder can be expressed as y = Tα (M∆ (X)) +
n
√
γ, where n is Gaussian noise. Given a received symbol y, MMSE decoding is performed at

the receiver to calculate an estimation of the corresponding source symbol. Optimal MMSE
decoding can be expressed as

X̂MMSE = E {X|y} =

∫
Xp (X|y) dX = (1/p (y))

∫
Xp (y|X) p (X) dX (8)

where the mapping functionM∆ (·) is used to obtain the conditional probability p(y|X). Note
that the integral in (8) can only be calculated numerically because M∆ (·) is discontinuous
and highly non-linear. To do so, X is first discretized using a uniform step and a mapped
value is calculated for each discretized point according to (7). As a result, we obtain a
discretized version of p(y|X). Next, p(X) is also computed for each point, and thus the
calculation of the integral is reduced to multiplicative and additive operations. Since this
discretization does not depend on the received symbol, it is calculated once off-line and
stored in the decoder. Although in this paper we focus on 2:1 systems, the proposed system
can be readily modified to adapt the compression rate from N:1 to N:K [17].

3.2 Bit interleaved coded modulation (BICM)

Figure 7 shows the block diagram of a digital BICM system. We assume a discrete-time
source that produces Gaussian and Laplacian independent and identically distributed (i.i.d.)
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real valued analog symbols Xa. These continuous samples are mapped to a discrete set
of values using an optimum Q-level scalar quantizer. Both, the quantization levels and
the partition regions can be obtained using the well-known Lloyd-Max algorithm [21, 22].
Although better performance could be obtained with vector quantization, we discarded this
possibility to keep the overall quantizing complexity at a low level. Next, the quantized
discrete-time symbols are converted into a binary representation using a suitable source
encoder. Again, among the many existing source encoding methods, we decided to use
Huffman encoding because it is a simple algorithm and approaches the source entropy. The
input alphabet to the Huffman encoder is made up of the Q-levels of the scalar quantizer,
i.e., no grouping is performed prior to the encoding. The length of the average Huffman
codeword used to represent each source sample will be denoted by Lm. The output bit
sequence is encoded with a rate r capacity approaching channel encoder. Due to their low
encoding and decoding complexity, we decided to use Irregular Repeat Accumulate (IRA)
codes [23]. Finally, the channel encoded bits are modulated using a real-valued M-PAM
constellation. Notice that an interleaver between the channel encoder and the modulator is
not strictly necessary since we are transmitting over an AWGN channel. A one-dimensional
PAM constellation has been chosen to keep the same signaling as the analog system in Section
II where real analog encoded symbols are transmitted. The constellation size M limits the
maximum attainable data rate over the channel. We chose the value M = 256 which allows
the transmission of a maximum of 8 bits per channel use, a transmission rate high enough
for the comparison carried out in the ensuing section. Higher values of M could be used but
they yield to extremely complex PAM constellations that are not feasible in practice. At
the receiver, an optimum detector calculates the LLRs of the transmitted bits and passes
them to the sum-product IRA decoding algorithm. After a maximum number of decoding
iterations, the resulting bits are hard-decoded and dequantized to the corresponding levels.
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